Regulators of AWC-Mediated Olfactory Plasticity in Caenorhabditis elegans
نویسندگان
چکیده
While most sensory neurons will adapt to prolonged stimulation by down-regulating their responsiveness to the signal, it is not clear which events initiate long-lasting sensory adaptation. Likewise, we are just beginning to understand how the physiology of the adapted cell is altered. Caenorhabditis elegans is inherently attracted to specific odors that are sensed by the paired AWC olfactory sensory neurons. The attraction diminishes if the animal experiences these odors for a prolonged period of time in the absence of food. The AWC neuron responds acutely to odor-exposure by closing calcium channels. While odortaxis requires a Galpha subunit protein, cGMP-gated channels, and guanylyl cyclases, adaptation to prolonged odor exposure requires nuclear entry of the cGMP-dependent protein kinase, EGL-4. We asked which candidate members of the olfactory signal transduction pathway promote nuclear entry of EGL-4 and which molecules might induce long-term adaptation downstream of EGL-4 nuclear entry. We found that initiation of long-term adaptation, as assessed by nuclear entry of EGL-4, is dependent on G-protein mediated signaling but is independent of fluxes in calcium levels. We show that long-term adaptation requires polyunsaturated fatty acids (PUFAs) that may act on the transient receptor potential (TRP) channel type V OSM-9 downstream of EGL-4 nuclear entry. We also present evidence that high diacylglycerol (DAG) levels block long-term adaptation without affecting EGL-4 nuclear entry. Our analysis provides a model for the process of long-term adaptation that occurs within the AWC neuron of C. elegans: G-protein signaling initiates long-lasting olfactory adaptation by promoting the nuclear entry of EGL-4, and once EGL-4 has entered the nucleus, processes such as PUFA activation of the TRP channel OSM-9 may dampen the output of the AWC neuron.
منابع مشابه
Caenorhabditis elegans integrates the signals of butanone and food to enhance chemotaxis to butanone.
Behavioral plasticity induced by the integration of two sensory signals, such as associative learning, is an important issue in neuroscience, but its evolutionary origin and diversity have not been explored sufficiently. We report here a new type of such behavioral plasticity, which we call butanone enhancement, in Caenorhabditis elegans adult hermaphrodites: C. elegans specifically enhances ch...
متن کاملA Behavioral Switch: cGMP and PKC Signaling in Olfactory Neurons Reverses Odor Preference in C. elegans
Innate chemosensory preferences are often encoded by sensory neurons that are specialized for attractive or avoidance behaviors. Here, we show that one olfactory neuron in Caenorhabditis elegans, AWC(ON), has the potential to direct both attraction and repulsion. Attraction, the typical AWC(ON) behavior, requires a receptor-like guanylate cyclase GCY-28 that acts in adults and localizes to AWC(...
متن کاملParallel encoding of sensory history and behavioral preference during Caenorhabditis elegans olfactory learning
Sensory experience modifies behavior through both associative and non-associative learning. In Caenorhabditis elegans, pairing odor with food deprivation results in aversive olfactory learning, and pairing odor with food results in appetitive learning. Aversive learning requires nuclear translocation of the cGMP-dependent protein kinase EGL-4 in AWC olfactory neurons and an insulin signal from ...
متن کاملThe olfactory neuron AWC promotes avoidance of normally palatable food following chronic dietary restriction
Changes in metabolic state alter foraging behavior and food preference in animals. Here, I show that normally attractive food becomes repulsive to Caenorhabditis elegans if animals are chronically undernourished as a result of alimentary tract defects. This behavioral plasticity is achieved in two ways: increased food leaving and induction of aversive behavior towards food. A particularly stron...
متن کاملOdorant-specific adaptation pathways generate olfactory plasticity in C. elegans
Following prolonged exposure to an odorant, C. elegans exhibits a diminished response to the odorant for several hours. This olfactory adaptation is odorant selective; animals can adapt independently to different odorants sensed by a single pair of olfactory neurons, the AWC neurons. The mechanism of olfactory adaptation is genetically complex, with different genes required for adaptation to di...
متن کامل